Step of Proof: fseg_transitivity
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
fseg
transitivity
:
T
:Type,
l1
,
l2
,
l3
:(
T
List). fseg(
T
;
l1
;
l2
)
fseg(
T
;
l2
;
l3
)
fseg(
T
;
l1
;
l3
)
latex
by ((((((((Unfold `fseg` 0)
CollapseTHEN (Auto'))
)
CollapseTHEN (D (-1)
))
)
CollapseTHEN (
C
ExRepD
))
)
CollapseTHEN (((WeakSubstFor
l3
0)
CollapseTHEN (WeakSubstFor
l2
0))
))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
l1
:
T
List
C1:
3.
l2
:
T
List
C1:
4.
l3
:
T
List
C1:
5.
L1
:
T
List
C1:
6.
l2
= (
L1
@
l1
)
C1:
7.
L
:
T
List
C1:
8.
l3
= (
L
@
l2
)
C1:
L@0
:
T
List. ((
L
@
L1
@
l1
) = (
L@0
@
l1
))
C
.
Definitions
fseg(
T
;
L1
;
L2
)
,
A
List
,
[]
,
x
:
A
.
B
(
x
)
,
Void
,
i
j
,
A
B
,
P
Q
,
P
Q
,
P
&
Q
,
[
car
/
cdr
]
,
SQType(
T
)
,
P
Q
,
{
T
}
,
s
~
t
,
,
S
T
,
Top
,
{
x
:
A
|
B
(
x
)}
,
||
as
||
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
as
@
bs
,
,
type
List
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
t
T
,
,
Type
Lemmas
non
neg
length
,
cons
one
one
,
guard
wf
,
nat
wf
,
length
wf
nat
,
top
wf
,
append
wf
,
member
wf
origin